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Electromagnetic design engineers are always greedy for extra computational power to finish their tasks at the earliest. It is desired to 

optimize numerical data processing with all the computational power available. One way is to identify a part of data with a high degree 

of parallelism and then process it in the graphic processing units (GPUs). GPUs are optimized to process such data efficiently and quickly 

on it multicore hardware. The steps involved in a finite element (FE) electromagnetic simulation are computationally very expensive. 

One such step is the communication between FE solver and the material loss model that takes place for every element in the mesh for 

each time step. This task is massively parallel and thus, can be implemented in GPUs. This work is a first step towards the implementation 

of material loss models in GPUs. A physics-based material model, Jiles-Atherton (JA) model, is implemented in GPU to compute the B-

H hysteretic relationship which can be directly incorporated in FE simulation. The performance of the process is compared with the 

given microprocessor. It is concluded that the computational time can be greatly reduced with the help of GPUs. 
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I. INTRODUCTION 

HE FINITE ELEMENT METHOD (FEM) [1] is widely used to 

solve electrical machine design problems. If the 

geometrical size is large or the mesh density is high, a FE 

solution may be fairly expensive.  It becomes even more 

expensive when the nonlinear hysteretic material loss model is 

coupled with it to compute permeability of the ferromagnetic 

material needed to solve Maxwell equations. As an example, if 

a two dimensional mesh has fifty thousand linear triangular 

elements; there will be the same number of material models 

running independently of each other. To circumvent this 

problem, normally, a single valued B-H curve is employed and 

the iron loss calculation is performed in the post-processing 

stage using curve fitting formulae. 

With the rapid advancements in the multicore technology in 

recent years, parallel computing has played a key role in 

reducing the computation time. Graphic chips known as 

“Graphic Processing Units” (GPUs) [2] are naturally favored as 

data-parallel coprocessors because they have hundreds of cores 

which can execute computationally demanding tasks that are 

massively parallel in nature. They are relatively cheap, 

computationally powerful and energy efficient. General 

purpose GPU computing has been facilitated by easy-to-learn 

programming interfaces like CUDA [3]. GPUs have already 

been proven to be superior to conventional microprocessors in 

scientific computational problems like sparse vector matrix 

multiplication in iterative solvers [4].  

This work is probably the first attempt to implement the iron 

loss models in a parallel fashion. The main objective of this 

work is to reduce the execution time of iron loss model. Here, 

we have implemented the Jiles-Atherton (JA) material loss 

model [5] in GPU. A large number of instances of JA model 

have been executed in GPU in parallel to simulate the FE 

simulation scenario in which each element has its own instance 

of loss model. In this case, the execution of the JA model in 

GPU provides a time gain of 225%. 

II. THE JILES ATHERTON MODEL 

The JA model is one of the most popular hysteresis models 

that can be employed into FE simulations. It is a physics-based 

formulation that explains the hysteresis phenomenon with the 

help of domain wall pinning, translation and rotation. The final 

model is a form of first order differential equation (shown in 

Eq. (1)) which can be solved iteratively.  
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Where, Man(MS, a) is the anhysteretic magnetization that is 

computed using Langevin’s polynomial [5], Ms, , a, k and c 

are the JA model parameters. The details of these parameters, 

model formulation and the differential equation are given in 

detail in [4]. Eq. (1) is simple to implement and computationally 

inexpensive [6]. It only requires the five material specific model 

input parameters, previous value of input and output, and 

current value of input to predict the current output.   

III. THE JA MODEL IMPLEMENTATION IN GPU 

A. GPU Architecture 

In this work, we have implemented the JA Model on NVIDIA 

Quadro K600 graphic card ($129 as of Nov, 2014). It has a 

Kepler GK107 GPU which consists of one streaming 

multiprocessor and has 192 SMX CUDA parallel cores running 

at 875 MHz. The GPU has 1024 MB of DDR3 global GPU 

memory, the maximum number of active threads  on GPU is 

2,048 and the number of 32-bit registers on GPU are 65,536. It 

is CUDA 3.0 compatible. The details of the CUDA versions can 

be seen online [7].  

B. Implementation in GPU 

The function that is executed on GPU is called kernel which 

in this work is the JA model itself. The input magnetic field 

intensity vector H having the length of the number of elements 

in the FE mesh is transferred to GPU global memory for each 

T 



time step. Each entry in this vector corresponds to the magnetic 

field intensity Helement of an element in the mesh. The Kernel 

function is executed in parallel for each element in the vector. 

The output magnetic flux density vector B is computed and 

transferred back to computer main memory (RAM). The 

process is repeated for N time steps (i.e. N = 2000). 

 

 
Fig. 1. Measured and computed hysteresis loop for sinusoidal H (f = 50 Hz). 

The identified JA parameters’ values are Ms = 1.229 x 106 A/m, a = 33.7 A/m, 

 = 8.77 x 10-5, k = 57.9 A/m, c = 0.05.  
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Fig. 2.(a) Absolute time spent by CPU and GPU to solve x number of JA models 

for N = 2000 time steps (b) Time gain achieved using NVIDIA Quadro K600. 
All data processing is done with floating point numbers with double precision. 

 

IV. RESULTS AND DISCUSSION 

In this work, we have used a Dell Precision T3610 workstation 

equipped with Intel Xeon® E5-1650 v2 processor running at 3.5 

GHz clock and 32 GB of DDR3 RAM. The B-H loop of 

35WW300 non-oriented steel was measured using the 

Brockhaus single sheet tester for sinusoidal flux density. 

Finally, the JA model parameters were identified using 

nonlinear least squares method [8]. The magnetic flux density 

B was computed for one complete time cycle for all the 

elements in the H vector. As an example, the B-H loop 

computed using JA on GPU for one of the element is compared 

with the measured results in Fig. 1. In Fig. 2(a), the performance 

of the NVIDIA Quadro K600 graphic card is compared against 

the sequential implementation in our Intel Xeon® processor in 

terms of time taken to solve a given number of JA models. The 

gain achieved in terms of time is shown in Fig. 2(b). It should 

be noted here that we have considered the total execution time 

in GPU. That includes, memory allocation time in GPU global 

memory, memory transfer time from RAM to GPU global 

memory, kernel execution time and memory transfer time from 

GPU global memory to RAM. It can be seen in Fig. 2(b) that 

for smaller vector lengths, memory transfer time dominates the 

kernel execution time, therefore, Tgain < 1. It was observed that 

for larger vector lengths, all the memory transfers consume less 

than 10 % of the total time. This is because the GPU divides the 

data into chunks as a multiple of active threads and performs 

computations thus, increasing execution time. As a proof of 

concept, a time gain of 225% has been achieved with this entry 

level GPU. In order to achieve even higher gain, the GPU 

burden can be shared with the CPU because CPU is free while 

the GPU is performing the task. 

The use of more advanced GPU engines, like the Tesla K40 

and K80, can further reduce the computational time of the 

material model in finite element (FE) simulations. These 

powerful coprocessors can also offer gains when using 

computationally expensive hysteresis models, such as the 

Preisach model. In this way, the hysteresis phenomenon can be 

efficiently incorporated into FE simulations in terms of 

computational time.  
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