
Implementation of Iron Loss Model on Graphic Processing Units

Sajid Hussain, Student Member, IEEE, Rodrigo C.P. Silva, and David A. Lowther, Senior Member, IEEE

Department of Electrical and Computer Engineering, McGill University, Montreal, QC H3A 0E9, Canada

david.lowther@mcgill.ca

Electromagnetic design engineers are always greedy for extra computational power to finish their tasks at the earliest. It is desired to

optimize numerical data processing with all the computational power available. One way is to identify a part of data with a high degree

of parallelism and then process it in the graphic processing units (GPUs). GPUs are optimized to process such data efficiently and quickly

on it multicore hardware. The steps involved in a finite element (FE) electromagnetic simulation are computationally very expensive.

One such step is the communication between FE solver and the material loss model that takes place for every element in the mesh for

each time step. This task is massively parallel and thus, can be implemented in GPUs. This work is a first step towards the implementation

of material loss models in GPUs. A physics-based material model, Jiles-Atherton (JA) model, is implemented in GPU to compute the B-

H hysteretic relationship which can be directly incorporated in FE simulation. The performance of the process is compared with the

given microprocessor. It is concluded that the computational time can be greatly reduced with the help of GPUs.

Index Terms— Graphic processing unit (GPUs), parallel processing, iron loss, Jiles-Atherton model, finite element method.

I. INTRODUCTION

HE FINITE ELEMENT METHOD (FEM) [1] is widely used to

solve electrical machine design problems. If the

geometrical size is large or the mesh density is high, a FE

solution may be fairly expensive. It becomes even more

expensive when the nonlinear hysteretic material loss model is

coupled with it to compute permeability of the ferromagnetic

material needed to solve Maxwell equations. As an example, if

a two dimensional mesh has fifty thousand linear triangular

elements; there will be the same number of material models

running independently of each other. To circumvent this

problem, normally, a single valued B-H curve is employed and

the iron loss calculation is performed in the post-processing

stage using curve fitting formulae.

With the rapid advancements in the multicore technology in

recent years, parallel computing has played a key role in

reducing the computation time. Graphic chips known as

“Graphic Processing Units” (GPUs) [2] are naturally favored as

data-parallel coprocessors because they have hundreds of cores

which can execute computationally demanding tasks that are

massively parallel in nature. They are relatively cheap,

computationally powerful and energy efficient. General

purpose GPU computing has been facilitated by easy-to-learn

programming interfaces like CUDA [3]. GPUs have already

been proven to be superior to conventional microprocessors in

scientific computational problems like sparse vector matrix

multiplication in iterative solvers [4].

This work is probably the first attempt to implement the iron

loss models in a parallel fashion. The main objective of this

work is to reduce the execution time of iron loss model. Here,

we have implemented the Jiles-Atherton (JA) material loss

model [5] in GPU. A large number of instances of JA model

have been executed in GPU in parallel to simulate the FE

simulation scenario in which each element has its own instance

of loss model. In this case, the execution of the JA model in

GPU provides a time gain of 225%.

II. THE JILES ATHERTON MODEL

The JA model is one of the most popular hysteresis models

that can be employed into FE simulations. It is a physics-based

formulation that explains the hysteresis phenomenon with the

help of domain wall pinning, translation and rotation. The final

model is a form of first order differential equation (shown in

Eq. (1)) which can be solved iteratively.

𝑑𝑀

𝑑𝐻
=

1

(1+𝑐)

(𝑀𝑎𝑛(𝑀𝑠,𝑎)−𝑀)
𝛿𝑘

µ𝑜
− 𝛼 (𝑀𝑎𝑛(𝑀𝑠,𝑎)−𝑀)

 +
𝑐

(1+𝑐)

𝑑𝑀𝑎𝑛(𝑀𝑠,𝑎)

𝑑𝐻
. (1)

Where, Man(MS, a) is the anhysteretic magnetization that is

computed using Langevin’s polynomial [5], Ms, , a, k and c

are the JA model parameters. The details of these parameters,

model formulation and the differential equation are given in

detail in [4]. Eq. (1) is simple to implement and computationally

inexpensive [6]. It only requires the five material specific model

input parameters, previous value of input and output, and

current value of input to predict the current output.

III. THE JA MODEL IMPLEMENTATION IN GPU

A. GPU Architecture

In this work, we have implemented the JA Model on NVIDIA

Quadro K600 graphic card ($129 as of Nov, 2014). It has a

Kepler GK107 GPU which consists of one streaming

multiprocessor and has 192 SMX CUDA parallel cores running

at 875 MHz. The GPU has 1024 MB of DDR3 global GPU

memory, the maximum number of active threads on GPU is

2,048 and the number of 32-bit registers on GPU are 65,536. It

is CUDA 3.0 compatible. The details of the CUDA versions can

be seen online [7].

B. Implementation in GPU

The function that is executed on GPU is called kernel which

in this work is the JA model itself. The input magnetic field

intensity vector H having the length of the number of elements

in the FE mesh is transferred to GPU global memory for each

T

time step. Each entry in this vector corresponds to the magnetic

field intensity Helement of an element in the mesh. The Kernel

function is executed in parallel for each element in the vector.

The output magnetic flux density vector B is computed and

transferred back to computer main memory (RAM). The

process is repeated for N time steps (i.e. N = 2000).

Fig. 1. Measured and computed hysteresis loop for sinusoidal H (f = 50 Hz).

The identified JA parameters’ values are Ms = 1.229 x 106 A/m, a = 33.7 A/m,

 = 8.77 x 10-5, k = 57.9 A/m, c = 0.05.

(a)

(b)

Fig. 2.(a) Absolute time spent by CPU and GPU to solve x number of JA models

for N = 2000 time steps (b) Time gain achieved using NVIDIA Quadro K600.
All data processing is done with floating point numbers with double precision.

IV. RESULTS AND DISCUSSION

In this work, we have used a Dell Precision T3610 workstation

equipped with Intel Xeon® E5-1650 v2 processor running at 3.5

GHz clock and 32 GB of DDR3 RAM. The B-H loop of

35WW300 non-oriented steel was measured using the

Brockhaus single sheet tester for sinusoidal flux density.

Finally, the JA model parameters were identified using

nonlinear least squares method [8]. The magnetic flux density

B was computed for one complete time cycle for all the

elements in the H vector. As an example, the B-H loop

computed using JA on GPU for one of the element is compared

with the measured results in Fig. 1. In Fig. 2(a), the performance

of the NVIDIA Quadro K600 graphic card is compared against

the sequential implementation in our Intel Xeon® processor in

terms of time taken to solve a given number of JA models. The

gain achieved in terms of time is shown in Fig. 2(b). It should

be noted here that we have considered the total execution time

in GPU. That includes, memory allocation time in GPU global

memory, memory transfer time from RAM to GPU global

memory, kernel execution time and memory transfer time from

GPU global memory to RAM. It can be seen in Fig. 2(b) that

for smaller vector lengths, memory transfer time dominates the

kernel execution time, therefore, Tgain < 1. It was observed that

for larger vector lengths, all the memory transfers consume less

than 10 % of the total time. This is because the GPU divides the

data into chunks as a multiple of active threads and performs

computations thus, increasing execution time. As a proof of

concept, a time gain of 225% has been achieved with this entry

level GPU. In order to achieve even higher gain, the GPU

burden can be shared with the CPU because CPU is free while

the GPU is performing the task.

The use of more advanced GPU engines, like the Tesla K40

and K80, can further reduce the computational time of the

material model in finite element (FE) simulations. These

powerful coprocessors can also offer gains when using

computationally expensive hysteresis models, such as the

Preisach model. In this way, the hysteresis phenomenon can be

efficiently incorporated into FE simulations in terms of

computational time.

ACKNOWLEDGMENT

This work was funded by the financial grants provided by the

Automotive Partnership Canada (APC) and National Science and

Engineering Research Commission of Canada (NSERC).

V. REFERENCES

[1] J. Jin. The finite element method in electromagnetics. John Wiley & Sons,

2014.
[2] J. D. Owens et al., “A survey of general-purpose computation on graphics

hardware,” Computer Graphics Forum, vol. 26, no. 1, pp. 80–113, 2007.
[3] NVIDIA CUDA [Online]. Available: http://developer.nvidia.com/object/

cuda.html

[4] M. M. Dehnavi, D. M. Fernandez, and D. Giannacopoulos, “Finite-ele-
ment sparse matrix vector multiplication on graphic processing units,”

Magnetics, IEEE Transactions on, vol. 46, no. 8, pp. 2982–2985, 2010.

[5] D. C. Jiles and D. L. Atherton, “Theory of ferromagnetic hysteresis,”
Journal of Magnetism and Magnetic Materials, vol. 61, no. 12, pp. 48 –

60, 1986.

[6] S. Rosenbaum, M. Ruderman, T. Ströhla, and T. Bertram, “Use of Jiles–
Atherton and Preisach hysteresis models for inverse feed-forward con-

trol,” Magnetics, IEEE Transactions on, vol. 46, no. 12, pp. 3984-3989,

2010.
[7] CUDA [Online]. Available: http://en.wikipedia.org/wiki/CUDA.

[8] P. Kis and A. Iványi, “Parameter identification of Jiles–Atherton model

with nonlinear least-square method,” Physica B: Condensed Matter, vol.

343, no. 1–4, pp. 59–64, 2004.

